三角関数の値

次の表は、角度 \(x\) を \(0\) から \(2\pi\) まで \( \frac{\pi}{6} \) ごとに分割し、それぞれの三角関数の値を示します:

三角関数の値 (三角関数ごと)

三角関数 \(0\) \(\frac{\pi}{6}\) \(\frac{\pi}{4}\) \(\frac{\pi}{3}\) \(\frac{\pi}{2}\) \(\frac{2\pi}{3}\) \(\frac{3\pi}{4}\) \(\frac{5\pi}{6}\) \(\pi\) \(\frac{7\pi}{6}\) \(\frac{5\pi}{4}\) \(\frac{4\pi}{3}\) \(\frac{3\pi}{2}\) \(\frac{5\pi}{3}\) \(\frac{7\pi}{4}\) \(\frac{11\pi}{6}\) \(2\pi\)
\(\sin x\) 0 \(\frac{1}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{\sqrt{3}}{2}\) 1 \(\frac{\sqrt{3}}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{1}{2}\) 0 -\(\frac{1}{2}\) -\(\frac{\sqrt{2}}{2}\) -\(\frac{\sqrt{3}}{2}\) -1 -\(\frac{\sqrt{3}}{2}\) -\(\frac{\sqrt{2}}{2}\) -\(\frac{1}{2}\) 0
\(\cos x\) 1 \(\frac{\sqrt{3}}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{1}{2}\) 0 -\(\frac{1}{2}\) -\(\frac{\sqrt{2}}{2}\) -\(\frac{\sqrt{3}}{2}\) -1 -\(\frac{\sqrt{3}}{2}\) -\(\frac{\sqrt{2}}{2}\) -\(\frac{1}{2}\) 0 \(\frac{1}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{\sqrt{3}}{2}\) 1
\(\tan x\) 0 \(\frac{1}{\sqrt{3}}\) 1 \(\sqrt{3}\) \(\text{undefined}\) -\(\sqrt{3}\) -1 -\(\frac{1}{\sqrt{3}}\) 0 \(\frac{1}{\sqrt{3}}\) 1 \(\sqrt{3}\) \(\text{undefined}\) -\(\sqrt{3}\) -1 \(\frac{1}{\sqrt{3}}\) 0
\(\csc x\) \(\text{undefined}\) 2 \(\sqrt{2}\) \(\frac{2}{\sqrt{3}}\) 1 \(\frac{2}{\sqrt{3}}\) \(\sqrt{2}\) 2 \(\text{undefined}\) -2 -\(\sqrt{2}\) -\(\frac{2}{\sqrt{3}}\) -1 -\(\frac{2}{\sqrt{3}}\) -\(\sqrt{2}\) -2 \(\text{undefined}\)
\(\sec x\) 1 \(\frac{2}{\sqrt{3}}\) \(\sqrt{2}\) 2 \(\text{undefined}\) -2 -\(\sqrt{2}\) -\(\frac{2}{\sqrt{3}}\) -1 -\(\frac{2}{\sqrt{3}}\) -\(\sqrt{2}\) -2 \(\text{undefined}\) 2 \(\sqrt{2}\) \(\frac{2}{\sqrt{3}}\) 1
\(\cot x\) \(\text{undefined}\) \(\sqrt{3}\) 1 \(\frac{1}{\sqrt{3}}\) 0 \(\frac{1}{\sqrt{3}}\) 1 \(\sqrt{3}\) \(\text{undefined}\) \(\frac{1}{\sqrt{3}}\) 1 \(\sqrt{3}\) 0 \(\frac{1}{\sqrt{3}}\) 1 \(\sqrt{3}\) \(\text{undefined}\)

逆三角関数の値(主要な値)

以下は、逆三角関数の定義域に基づいた代表値です:

\(\arcsin x\) \(\arccos x\) \(\arctan x\)
\(-1\) \(-\frac{\pi}{2}\) \(\pi\) \(-\frac{\pi}{4}\)
\(-\frac{\sqrt{3}}{2}\)
\(-\frac{1}{\sqrt{3}}\) \(-\frac{\pi}{6}\)
\(-\frac{1}{2}\) \(-\frac{\pi}{6}\) \(\frac{5\pi}{6}\)
0 0 \(\frac{\pi}{2}\) 0
\(\frac{1}{2}\) \(\frac{\pi}{6}\) \(\frac{5\pi}{6}\)
\(\frac{1}{\sqrt{3}}\) \(\frac{\pi}{6}\)
\(\frac{\sqrt{2}}{2}\) \(\frac{\pi}{4}\) \(\frac{\pi}{4}\)
\(\frac{\sqrt{3}}{2}\) \(\frac{\pi}{3}\) \(\frac{\pi}{6}\)
1 \(\frac{\pi}{2}\) 0 \(\frac{\pi}{4}\)
\(\sqrt{3}\) \(\frac{\pi}{3}\)